
Compressing Bitmap Indexes for Faster Search
Operations

Kesheng Wu, Ekow J. Otoo and Arie Shoshani
Lawrence Berkeley National Laboratory

Berkeley, CA 94720, USA
Email: �kwu, ejotoo, ashoshani�@lbl.gov

Abstract— In this paper, we study the effects of compression
on bitmap indexes. The main operations on the bitmaps during
query processing are bitwise logical operations such as AND, OR,
NOT, etc. Using the general purpose compression schemes, such as
gzip, the logical operations on the compressed bitmaps are much
slower than on the uncompressed bitmaps. Specialized compres-
sion schemes, like the byte-aligned bitmap code (BBC), are usu-
ally faster in performing logical operations than the general pur-
pose schemes, but in many cases they are still orders of magni-
tude slower than the uncompressed scheme. To make the com-
pressed bitmap indexes operate more efficiently, we designed a
CPU-friendly scheme which we refer to as the word-aligned hy-
brid code (WAH). Tests on both synthetic and real application data
show that the new scheme significantly outperforms well-known
compression schemes at a modest increase in storage space. Com-
pared to BBC, a scheme well-known for its operational efficiency,
WAH performs logical operations about 12 times faster and uses
only 60% more space. Compared to the uncompressed scheme, in
most test cases WAH is faster while still using less space. We fur-
ther verified with additional tests that the improvement in logical
operation speed translates to similar improvement in query pro-
cessing speed.

I. INTRODUCTION

This research was originally motivated by the need to man-
age the volume of data produce by a high-energy experiment
called STAR1 [25], [26]. In this experiment, information
about each potentially interesting collision event is recorded
and multi-terabyte (����) of data is generated each year. One
important way of accessing the data is to have the data manage-
ment system retrieve the events satisfying some condition such
as “Energy > 15 GeV and 7 <= NumParticles <
13” [5], [25]. The physicists have identified about 500 at-
tributes that are useful for this selection process and a typi-
cal condition may involve a handful of attributes. This type
of queries are known as the partial range queries. Since the
attributes are usually read not modified, the characteristics of
the dataset are very similar to those of commercial data ware-
houses. In data warehouse applications, one of the best known
indexing strategies for processing the partial range queries is
the bitmap index [6], [8], [21], [30]. For this reason, we have
selected to use the bitmap index for the data management soft-
ware [25].

Generally, a bitmap index consists of a set of bitmaps and
queries can be answered using bitwise logical operations on
�Information about the project is also available at

http://www.star.bnl.gov/STAR.

bitmap index
OID � =0 =1 =2 =3

1 0 1 0 0 0
2 1 0 1 0 0
3 3 0 0 0 1
4 2 0 0 1 0
5 3 0 0 0 1
6 3 0 0 0 1
7 1 0 1 0 0
8 3 0 0 0 1

�� �� �� ��

Fig. 1. A sample bitmap index.

the bitmaps. Figure 1 shows a set of such bitmaps for the at-
tribute � of a tiny table (�) consisting of only eight tuples
(rows). The attribute � can have one of four values, 0, 1, 2
and 3. There are four bitmaps each corresponding to one of
the four choices. For convenience, we have labeled the four
bit sequences ��� � � � � ��. To process the query “select *
from T where X < 2,” one performs the bitwise logical
operation �� OR ��. Since bitwise logical operations are well
supported by computer hardware, bitmap indexes are very effi-
cient to use [21]. In many data warehouse applications, bitmap
indexes are better than the tree based schemes [6], [21], [30],
such as the variants of B-tree [9] or R-tree [11]. According
to the performance model proposed by Jürgens and Lenz [14],
the bitmap indexes are likely to be even more competitive in
the future as the disk technology improves. In addition to sup-
porting complex queries on one single table as shown in this
paper, researchers have also demonstrated that bitmap indexes
can accelerate complex queries involving multiple tables [23].
Realizing the value of the bitmap indexes, most major DBMS
vendors have implemented them. The example shown in Fig-
ure 1 is the simplest form of the bitmap index we call the basic
bitmap index.

A bitmap index is typically generated for each attribute. The
basic bitmap index produces one bitmap for each distinct at-
tribute value and it may perform the logical OR operation on
as many as half of the bitmaps when answering a query in-
volving the attribute. For attributes with low cardinality, a
bitmap index is small compared to one of the tree based in-
dexes and it can answer a query faster as well. To process the
query “Energy > 15 GeV and 7 <= NumParticles

LBNL-49627

< 13,” a bitmap index on attribute Energy and a bitmap in-
dex on NumParticles are used separately to generate two
bitmaps representing objects satisfying the conditions on En-
ergy and NumParticles. A bitwise logical AND operation
is sufficient to combine the two bitmaps to generate the final an-
swer. These features make the bitmap index ideal for processing
partial range queries. However, as in many real applications, the
domain of many of the STAR attributes are continuous and the
number of different values actually appear in the datasets are
very large, in other words, the cardinalities of these attributes
are very high. In these cases, the basic bitmap index generates
too many bitmaps and operations on the bitmaps may also take
too long.

In this paper, we propose to improve the effectiveness of the
basic bitmap index by compression. Other ways of improv-
ing the bitmap index include binning and using different en-
coding. With binning, multiple values are grouped into a sin-
gle bin and only the bins are indexed [15], [25], [28]. This
strategy reduces the number of bitmaps used but it also intro-
duces inaccuracies. In order to accurately answer a query, one
has to scan some of the attribute values after operating on the
indexes. Many researchers have studied the strategy of using
different encoding schemes [6], [7], [22], [27], [30]. One well-
known scheme is the bit-sliced index, that encodes � distinct
values using ����� bits and creates a bitmap for each binary
digit [22]. This is related to the binary encoding scheme dis-
cussed elsewhere [6], [27], [30]. A drawback of this scheme is
that to answer each query, most of the bitmaps have to be ac-
cessed, and possibly multiple times. There are also a number
of schemes that generate more bitmaps than the bit-sliced index
but access less of them while processing a query, for examples,
the attribute value decomposition [6], interval encoding [7] and
the K-of-N encoding [27]. We choose to concentrate on com-
pression in this paper because it can be applied on any bitmap.
Once we have identified some efficient compression schemes,
we can improve all bitmap indexes. Additionally, a number of
other common indexing schemes such as the signature file [10],
[12], [16] and the bit transposed files [27] may also benefit from
efficient bitmap compression algorithms.

Other high-dimensional indexing schemes yet to be men-
tioned include the projection index [22] and the UB-tree [4],
[18], [19]. The projection index can be viewed as a different
way of organizing the attribute values of a table. It can be im-
plemented easily and efficiently by using bitmaps to store the
intermediate results, and we use it as the bases for measuring
the performance of our compressed bitmap index. The UB-
Tree is a promising technique, regrettably we have to leave it
out because of space limitations.

To compress the bitmap indexes, a simple option is to use
one of the text compression algorithms, such as LZ77 (used in
gzip) [17]. These algorithms are well-studied and effective in
reducing file sizes. However, performing logical operations on
the compressed data are usually significantly slower than on the
uncompressed data. To address this performance issue, a num-
ber of special algorithms have been proposed. Johnson and col-
leagues have conducted extensive studies on their performances
[13], [1]. From their studies, we know that the logical opera-
tions using these specialized schemes are usually faster than

those using gzip. One such specialized algorithm, called the
Byte-aligned Bitmap Code (BBC), is known to be very efficient.
It is used in a commercial database system, ORACLE [2], [3].
However, even with BBC, in many cases logical operations on
the compressed data still can be orders of magnitudes slower
than on the uncompressed data.

In this paper, we propose a simple algorithm for compressing
the bitmap indexes that improves the speed of logical operations
by an order of magnitude at a cost of small increase in space.
We call the method the Word-aligned Hybrid (WAH) compres-
sion scheme. This algorithm not only supports faster logical
operations but also enables the bitmap index to be applied to
attributes with high cardinalities. Our tests show that by us-
ing WAH compression, we can achieve good performance on
scientific datasets where most attributes have high cardinalities.
From their performance studies, Johnson and colleagues came
to the conclusion that one has to dynamically switch among
different compression schemes in order to achieve the best per-
formance [1]. We found that since WAH is significantly faster
than earlier compression schemes, there is no need to switch
compression schemes in a bitmap indexing software. The new
compression scheme not only improves the performance of the
bitmap indexes but also simplifies the indexing software.

The remainder of this paper is organized as follows. In Sec-
tion II we review three commonly used compression schemes
and identify their key features. These three were selected
as representatives in our performance comparisons. Sec-
tion III contains the description of the word-aligned hybrid code
(WAH). Section IV contains some timing results of the bit-
wise logical operations. Some timing information on process-
ing range queries are presented in section V. A short summary
is given in Section VI.

II. REVIEW OF BYTE BASED SCHEMES

In this section, we briefly review three well known schemes
for representing bitmaps and introduce the terminology needed
to described our new scheme. These three schemes are selected
as representatives from a number of schemes studied previously
[13], [29].

A straightforward way of representing a bitmap is to use one
bit of computer memory for each bit of the bitmap. We call this
the literal (LIT) bit vector2. This is the uncompressed scheme
and logical operations on uncompressed bitmaps are extremely
fast.

The second type of scheme in our comparisons is the general
purpose compression scheme such as gzip [17]. They are highly
effective in compressing data files. We use gzip as the represen-
tative because it is usually faster than others in decompressing
the data files.

As mentioned earlier, there are a number of compression
schemes that offer good compression and also allow fast bit-
wise logical operations. One of the best known schemes is
the Byte-aligned Bitmap Code (BBC) [2], [3], [13]. The BBC
scheme performs bitwise logical operations efficiently and it
compresses almost as well as gzip. We use BBC as the repre-
sentative for these types of schemes. Our implementation of the
�We use the term bit vector to describe the data structure used to represent

the compressed bitmaps.

BBC scheme is a version of the two-sided BBC code [29, Sec-
tion 3.2]. This version performs as well as the improved version
by Johnson [13]. In both Johnson’s tests [13] and ours, the time
curves for BBC and gzip (marked at LZ in [13]) cross at about
the same position.

Many of the specialized bitmap compression schemes, in-
cluding BBC, are based on the basic idea of run-length encod-
ing that represents consecutive identical bits (also called a fill
or a gap) by their bit value and their length. The bit value of
a fill is called the fill bit. If the fill bit is zero, we call the fill
a 0-fill, otherwise it is a 1-fill. Compression schemes generally
try to store repeating bit patterns in compact forms. The run-
length encoding is among the simplest of these schemes. This
simplicity allows logical operations to be performed efficiently
on the compressed bitmaps.

Different run-length encoding schemes commonly differ in
their representations of the fill lengths and the short fills. A
naive run-length code may use a word to represent all fill
lengths. This is ineffective because it uses more space to rep-
resent short fills than in the literal scheme. One common im-
provement is to represent the short fills literally. The second
improvement is to use as few bits as possible to represent the
fill length. Given a bit sequence, the BBC scheme first divides
it into bytes and then groups the bytes into runs. Each BBC
run consists of a fill followed by a tail of literal bytes. Since a
BBC fill always contains a number of whole bytes, it represents
the fill length as the number of bytes rather than the number of
bits. In addition, it uses a multi-byte scheme to represent the fill
lengths [2], [13]. This strategy often uses more bits to represent
a fill length than others such as ExpGol [20]. However it allows
for faster operations [13].

Another property that is crucial to the efficiency of the BBC
scheme is the byte alignment. This property limits a fill length
to be an integer multiple of bytes. More importantly, it ensures
that during any bitwise logical operation a tail byte is never bro-
ken into individual bits. Because working on individual bits
is much less efficient than working on whole bytes on most
CPUs, byte-alignment is crucial to the operational efficiency of
BBC. Removing the alignment may lead to better compression.
For example, the ExpGol scheme [20] can compress better than
BBC partly because it does not obey the byte alignment. How-
ever, bitwise logical operations on ExpGol bit vectors are often
much slower than on BBC bit vectors [13].

III. WORD BASED SCHEMES

Most of the known compression schemes are byte based, that
is, they access computer memory one byte at a time. On most
modern computers, accessing one byte takes as much time as
accessing one word [24]. A computer CPU with MMX tech-
nology offers the capability of performing a single operation on
multiple bytes. This may automatically turn byte accesses into
word accesses. However, because the bytes in a compressed
bit vector typically have complex dependencies, logical opera-
tions implemented in high-level languages are unlikely to take
advantage of the MMX technology. Instead of relying on the
hardware and compilers, we developed a new scheme that ac-
cesses only whole words. It is named the word-aligned hybrid

code (WAH). We have previously considered a number of word-
based schemes and this is the most efficient one in our tests [29].

The word-aligned hybrid (WAH) code is similar to BBC in
that it is a hybrid between the run-length encoding and the lit-
eral scheme. Unlike BBC, WAH is much simpler and it stores
compressed data in words rather than in bytes. There are two
types of words in WAH: literal words and fill words. In our
implementation, we use the most significant bit of a word to
distinguish between a literal word (0) and a fill word (1). This
choice allows one to easily distinguish a literal word from a fill
word without explicitly extracting the bit. The lower bits of a
literal word contain the bit values from the bitmap. The second
most significant bit of a fill word is the fill bit and the lower
bits store the fill length. WAH imposes the word-alignment re-
quirement on the fills, it requires that all fill lengths be integer
multiples of the number of bits in a literal word. The word-
alignment ensures that logical operation functions only need to
access words not bytes or bits.

Figure 2 shows a WAH bit vector representing 128 bits. In
this example, we assume each computer word contains 32 bits.
Under this assumption, each literal word stores 31 bits from the
bitmap and each fill word represents a fill with a multiple of 31
bits. If the machine has 64-bit words, each literal word would
store 63 bits from the bitmap and each fill would have a multiple
of 63 bits. The second line in Figure 2 shows how the bitmap is
divided into 31-bit groups and the third line shows the hexadec-
imal representation of the groups. The last line shows the values
of the WAH words. The first three words are normal words, two
literal words and one fill word. The fill word 80000002 indi-
cates a 0-fill of two-word long (containing 62 consecutive zero
bits). Note that the fill word stores the fill length as two rather
than 62. In other word, we represent the fill length as multiples
of the literal word size. The fourth word is the active word that
stores the last few bits that can not be stored in a normal word,
and another word (not shown) is needed to stores the number of
useful bits in the active word.

The logical operation functions are easy to implement but
are tedious to describe. To save space, we refer the interested
reader to a technical report [29]. Here we only briefly describe
one example, see Figure 3. In this example, the first operand of
the logical operation is the one in Figure 2. To perform a logical
operation, we basically need to match each group of 31 bits
from both operands and generate the groups for the result using
the hardware support to perform the operations between groups
of 31 bits. Each column of the table is reserved to represent one
such group. A literal word occupies the location for the group
and a fill word is given at the space reserved for the first group
it represents. The first 31-bit group of the result C is the same
as that of A because the corresponding group in B is part of a
1-fill. The next three groups of C contain only zero bits. The
active words are always treated separated.

Figure 3 shows a decompressed version of the three bitmaps
involved in the operation for the purpose of illustration only.
The logical operations can be directly performed on the com-
pressed bitmaps and the time needed by one such operation on
two operands is related to the sizes of the compressed bitmaps.
Let the compression ratio be the ratio of size of a compressed
bitmap and its uncompressed counterpart. When the average

128 bits 1,20*0,3*1,79*0,25*1
31-bit groups 1,20*0,3*1,7*0 62*0 10*0,21*1 4*1
groups in hex 40000380 00000000 00000000 001FFFFF 0000000F
WAH (hex) 40000380 80000002 001FFFFF 0000000F

Fig. 2. A WAH bit vector. Each WAH word (last row) represents a multiple of 31 bits from the bit sequence, except the last word that represents the four leftover
bits.

decompressed
A 40000380 00000000 00000000 001FFFFF 0000000F
B 7FFFFFFF 7FFFFFFF 7C0001E0 3FE00000 00000003
C 40000380 00000000 00000000 00000000 00000003

compressed
A 40000380 80000002 001FFFFF 0000000F
B C0000002 7C0001E0 3FE00000 00000003
C 40000380 80000003 00000003

Fig. 3. A bitwise logical AND operation on WAH compressed bitmaps, C = A AND B.

compression ratio of the two operands are less than 0.5, the log-
ical operation time is expected to be proportional to the average
compression ratio [29].

IV. PERFORMANCE OF THE LOGICAL OPERATIONS

In this section, we discuss the performance of the logical op-
erations. Ultimately we are interested in enhancing the speed
of query processing. However, because logical operations are
the main operations on the bitmaps and their performances are
directly affected by the compression schemes, we discuss the
performances of the logical operations first.

The WAH compression scheme are compared against the
three schemes reviewed in Section 2. The tests are conducted
on three sets of data, a set of random bitmaps, a set of bitmaps
generated from a Markov process and a set of bitmap indexes on
some real application data. Each synthetic bitmap has 100 mil-
lion bits. The synthetic data are controlled through two param-
eters, the bit density and the clustering factor. In a bitmap, the
bit density is the fraction of bits that are one and the clustering
factor is the average length of the 1-fills. The random bitmaps
are generated according to the bit density and the Markov pro-
cess generates bitmaps with a specified bit density and cluster-
ing factor. The goal of this test is to examine the performance
of the different compression schemes under various conditions.
However to limit the number of test cases, we restrict all syn-
thetic bitmaps to have bit density no more than 1/2. Since all
compression schemes can compress 0-fills and 1-fills equally
well, the performance on high bit density bitmaps should be the
same as on their complements. When necessary to distinguish
the two type of synthetic bitmaps, we refer to them as the ran-
dom bitmaps and the Markov bitmaps according to how they
are generated. The real application is a high-energy physics ex-
periment called STAR [25], [26]. The data used in our tests can
be viewed as one relational table consisting of about 2.2 mil-
lion tuples and 500 attributes. The bitmaps used in this test are
bitmap indexes on a set of 12 most frequently queried attributes.

We have conducted a number of tests on different machines
and found that the relative performances among the different
compression schemes are independent of the specific machine

architecture. This characteristic was also observed in a differ-
ent performance study [13]. The main reason for this is that
most of the clock cycles are consumed by branching operations
such as “if” tests and “loop condition” tests. These operations
only depend on the clock speed. For this reason, we only re-
port the timing results from a Sun Enterprise 450 3 that is based
400 MHz UltraSPARC II CPUs. The test data were stored in a
file system striped across five disks connected to an UltraSCSI
controller and managed by a VERITAS Volume Manager4. The
VERITAS software distribute files across the five disks to maxi-
mize the IO performance. The machine has four gigabytes (GB)
of RAM which is large enough to store each of our test cases in
memory. The secondary cache size is 4 MB. In most cases, this
cache is too small to store the two operands and the result of a
logical operation.

Because of space limitations, we only show performance of
the logical OR operations in the following discussions. On the
same machine, a logical AND operation typically takes slightly
less time than a logical OR operation on the same bit vectors,
and a logical XOR operation typically takes slightly more time.
In general, if WAH is X times faster than BBC in performing a
logical OR operation, the same would also be true for the two
other logical operations.

The most likely scenario of using these bit vectors in a
database system is to read a number of them from disks and
then perform bitwise logical operations on them. In most cases,
the bit vectors simply need to be read into memory and stored
in the corresponding in-memory data structures. Only the gzip
scheme needs a significant amount of CPU cycles to decom-
press the data files into the literal representation before actually
performing the logical operations. In our tests involving gzip,
only the operands of logical operations are compressed; the re-
sults are not. This is to save time. Had we compressed the re-
sult as well, the operations would take several times longer than
those reported in this paper because the compression process is

�Information about the E450 is available at http://www.sun.com/-
servers/workgroup/450.
�Information about VERITAS Volume Manager is available at

http://www.veritas.com/us/products.

more time-consuming [29]. We use the direct method for both
BBC and WAH. In other word, a logical operation directly op-
erates on two compressed operands and produces a compressed
result. It is one of the four strategies studied by Johnson [13].
We have chosen the direct method because it requires less mem-
ory and is often faster than the alternative methods.

Figure 4 shows the time it takes to perform the bitwise logical
OR operations on the random bitmaps. Each data point shows
the time to perform a logical operation on two bitmaps with
similar bit densities. Figure 4(a) shows the logical operation
time and Figure 4(b) shows the total time including the time to
read the two bitmaps from files. In most cases, the IO time is a
relatively small portion of the total time for BBC and WAH. Ne-
glecting the IO time does not significantly change the relative
performance between WAH and BBC. In an actual application,
once the bitmaps are read into memory, they are likely to be
used more than once. The average cost of a logical operation
would be close to what is shown in Figure 4(a). From now on
when showing the logical operation time, we will not include
the IO time.

Among the schemes shown, it is clear that WAH uses much
less time than either BBC or gzip. In all test cases, the gzip
scheme uses at least three times more time than the literal
scheme. In almost half of the test cases, BBC takes more than
ten times longer than WAH.

When the bit density is about 1/2, the random bitmaps are
not compressible by WAH. For convenience, we refer to the bit
vectors only literal words as the decompressed bit vectors. Usu-
ally, each logical operation function takes two compressed bit
vectors and generates a compressed result, but the functions that
perform logical operations on decompressed bit vectors always
generate decompressed results. It’s easy to see that the logical
operations on decompressed WAH bit vectors is nearly as fast
as on the literal bit vectors. Unless one explicitly decompress
a BBC bit vector, it is very unlikely to have a decompressed
BBC bit vector. Even with bit density of 1/2, a BBC bit vector
still contains a number of short fills. Even if we explicitly de-
compress the bit vectors, operations on decompressed BBC bit
vectors are not as efficient as on literal bit vectors. In Figure 4,
the line for WAH falls on top of the one for the literal scheme at
bit density of 1/2 but the line for BBC only shows a slight dip.

In Figure 4 we see that when bit density is above 0.01, WAH
performs logical operations slower than the literal scheme.
Since on the uncompressed bitmaps WAH can perform logical
operations as well as the literal scheme, we might store those
dense bitmaps without compression and expect the logical op-
erations to be as fast as in the literal scheme. However, do-
ing so significantly increases the space requirement and it does
not even guarantee the speed of logical operation is always the
fastest. This leads us to take a more careful look at the com-
pression effectiveness and factors that determine the logical op-
eration speed.

Figure 5 shows the sizes of the four types of bit vectors.
Each data point in this figure represents the average size of a
number of bitmaps with the same bit density and clustering fac-
tor. As the bit density increases from 0.0001 to 0.5, the bit
sequences become less compressible and it takes more space to
represent them. When the bit density is 0.0001, all four com-

pression schemes use less than 1% of the disk space required
by the literal scheme. At a bit density of 0.5, the test bitmaps
become incompressible and the compression schemes all use
slightly more space than the literal scheme. In most cases,
WAH uses more space than the two byte based schemes, BBC
and gzip. For bit density between 0.001 and 0.01, WAH uses
about 2.5 (� ���) times the space as BBC bit vectors. In fact,
in extreme cases, WAH may use four times as much space as
BBC. Fortunately, these cases do not dominate the total space
required by a bitmap index. In a typical bitmap index, the set
of bitmaps contains some that are easy to compress and some
that are hard to compress, and the total size is dominated by the
hard to compress ones. Since most schemes use about the same
amount of space to store these hard to compress ones, the differ-
ences in total sizes are usually much smaller than the extreme
cases. For example, on the set of STAR data, the bitmap in-
dexes compressed using WAH are about 60% bigger than those
compressed using BBC, see Figure 7. This is a fairly modest
increase in space compared to the increase in speed.

To verify that the logical operation time is proportional to the
sizes of the operands, we plotted the timing results of the two
sets of synthetic bitmaps together in Figure 6(a) and the results
on the STAR bitmaps in Figure 6(b). In both cases, the com-
pression ratio is used as the horizontal axes. Since in each plot,
the bitmaps are of the same length, the sizes are directly pro-
portional to the compression ratios. In each plot, a symbol rep-
resents the average time of logical operations on bitmaps with
the same size. The dashed and dotted lines are produced from
linear regressions. Most of the data points near the center of
the graphs are close to the regression lines. Those logical op-
erations involving bit vectors with high compression ratios are
nearly constant. For very small bit vectors, where the logical
operation time is measured to be a few microseconds, the logi-
cal operations time deviates from the linear relation because of
the overheads such as the timing overhead, function call over-
head and other lower order terms in the complexity expression.
The regression lines for WAH and BBC are about a factor of
ten apart in both plots.

The performance differences between WAH and BBC can be
attributed to three main factors.

1) The encoding scheme of WAH is much simpler than
BBC. WAH has only two kinds of words and one test is
sufficient to determine the type of any given word. In con-
trast, our implementation of BBC has four different types
of runs, other implementations have even more [13]. It
may take up to three tests in order to decide the run type
of a header byte. After deciding the run type, many clock
cycles may still be needed to fully decode a run to deter-
mine the fill length or the tail value.

2) During the logical operations, WAH always accesses
whole words, while BBC accesses bytes. On most
bitmaps, BBC needs more time to load its data from the
main memory to CPU registers than WAH.

3) BBC can encode shorter fills more compactly than WAH,
however, this comes at a cost. Each time BBC encounters
a short fill, say a fill with less than 8 bytes, it starts a new
run. WAH typically represent such a short fill literally. It
is much faster to operate on a WAH literal word than on

0.0001 0.001 0.01 0.1 0.5
10

−3

10
−2

10
−1

10
0

10
1

bit density

O
R

 t
im

e
(s

ec
)

LIT
gzip
BBC
WAH

0.0001 0.001 0.01 0.1 0.5
10

−3

10
−2

10
−1

10
0

10
1

bit density

to
ta

l t
im

e
(s

ec
)

LIT
gzip
BBC
WAH

(a) logical OR time (b) total time (including IO)

Fig. 4. CPU seconds needed to perform a bitwise OR operation on two random bitmaps.

0.0001 0.001 0.01 0.1 0.5
10

4

10
5

10
6

10
7

10
8

bit density

si
ze

 (
b

yt
es

)

LIT
gzip
BBC
WAH

0.0001 0.001 0.01 0.1 0.5
10

3

10
4

10
5

10
6

10
7

10
8

density

si
ze

s
(b

yt
es

)

LIT
random
f=2
f=4
f=8
f=32
f=128

(a) random (b) Markov (WAH only)

Fig. 5. The sizes of the compressed bit vectors. The symbols for the Markov bitmaps are marked with their clustering factors.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

compression ratio

O
R

 t
im

e
(s

ec
)

LIT
BBC
WAH

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

compression ratio

O
R

 t
im

e
(s

ec
)

LIT
gzip
BBC
WAH

(a) all synthetic bitmaps (b) STAR bitmap indexes

Fig. 6. Logical operation time is almost proportional to compression ratio. The STAR bitmap indexes are on the 12 most queried attributes.

a BBC run. This situation is common when bit density is
greater than 0.01 in random bitmaps.

If we sum up the execution time of all logical operations per-
formed on the STAR bitmaps for each compression scheme,
the total time for BBC is about 12 times that of WAH. Much
of this difference can be attributed to factor 3 discussed above.
There are a number of bitmaps that can not be compressed by
WAH but can be compressed by BBC. When operating on these
bitmaps, WAH is nearly 100 times faster than BBC. On very
sparse bit vectors, WAH is about four to five times faster than
BBC.

Compared to the literal scheme, BBC is faster in a fraction
of the test cases, however, WAH is faster in more than 60% of
the test cases. In the worst case, BBC can be nearly 100 times
slower than the literal scheme, but WAH is only 6 times slower.
It might be desirable to use the literal scheme in some cases.
To reduce the complexity of the software, we suggest one to
use WAH but only use the literal words. Regarding whether to
store random bitmaps with bit density greater than 0.01 without
compression, we recommend that the bitmaps be compressed.

V. WAH IMPROVES BITMAP INDEX EFFECTIVENESS

In this section, we use a set of real application data from
STAR to demonstrate the effectiveness of WAH compressed
bitmap index. The frequently queried attributes can be orga-
nized as a relational table consisting of millions of tuples and
hundreds of attributes. A typical query is a range query in-
volving a handful of attributes. If Energy and NumParti-
cles are two attributes of the table, a query on them might
be “Energy > 15 GeV and 7 <= NumParticles <
13”. In addition, most user queries may involve different at-
tributes and different number of them. Queries of this form,
which we call partial range queries, are particularly difficult for
most database systems. For example, if a B-tree index is cre-
ated for each attribute, ORACLE usually selects one of them
to resolve part of the query and then scans the table to fully
resolve the query. This approach often takes more time than
simply scanning the table without using an index.

Commonly used multidimensional indexing schemes such as
variations of R-tree [11] are not effective for two reasons. Most
of these schemes are only effective when the number of at-
tributes are no more than ten, but the STAR dataset has hun-
dreds of attributes. In addition, if a query does not involve all
attributes indexed, these multidimensional indexes are not ef-
fective in processing the query. A number of researchers have
confirmed that the projection index and the bitmap index are
among the fastest schemes in processing partial range queries
[14], [21], [22]. The projection index is simply another name
for vertical partitioning a relational table, we store the values of
an attribute consecutively rather than storing the values of a tu-
ple consecutively. In this case, queries are processed by simply
compare on the values. In later discussions, we will refer to this
as the projection scan or p scan for short.

Our goal is to demonstrate that WAH compression can im-
prove the performance of the bitmap indexing scheme. To do
this, we perform two sets of tests. The first one is on some
low cardinality attributes and the second is on some high car-
dinality attributes. The bitmap index is usually thought to be

efficient for low cardinality attributes. In this case, we show
that the WAH compressed indexes are not only smaller than
the uncompressed ones but are also more efficient in answering
range queries. When the cardinalities are high, it is impractical
to generate the uncompressed indexes. In this case, we show
that the WAH compressed indexes are still of reasonable sizes
and can process range queries faster than the BBC compressed
indexes and the projection index. The high cardinality case are
of particular interests to us because the most frequently queried
attributes of the STAR data have high cardinality.

In our tests, the low cardinality attributes are the 12 attributes
with the lowest cardinalities from the STAR data, and the high
cardinality attributes are the 12 attributes that are most likely
to be queried by a physicist. All low cardinality attributes are
four-byte integers; the frequently queried attributes are mostly
four-byte integers and floating-point values except one attribute
is eight-byte floating-point value. The total size for the first set
is about 104 MB and the second one is 113 MB.

Figure 7 shows the sizes of the bitmap indexes. Four columns
are displayed in each table. Column ‘c’ shows the cardinal-
ities of the attributes. Columns marked ‘WAH’ and ‘BBC’
are our stand-alone implementations of the compressed bitmap
indexes. The column marked ‘ORACLE’ shows the sizes of
the bitmap indexes in ORACLE. Since ORACLE implements a
BBC compressed bitmap index, conceptually it is equivalent to
our BBC compressed bitmap index.

In the first data set, there are a total of 312 distinct values,
i.e., there are 312 bitmaps in all bitmap indexes. Without com-
pression, 312 bitmaps use about 84MB. All three versions of
the compressed bitmap indexes are less than 10% of this size
and are less than 7% of the data size.

In the second data set, there are nearly 2.7 million distinct
values. Without compression, the bitmap index size would be
more than 720GB (more than 6000 times the data size). Both
BBC and WAH are very effective in reducing the sizes of the
bitmap indexes because the majority of the bitmaps are very
sparse. The total size of each set of the compressed bitmap
indexes is less than half of the size of the B-tree indexes. Using
ORACLE, the total size of 12 B-tree indexes take about 400
MB, nearly four times the size of the data.

Figure 8 shows the average query processing time of three
compressed bitmap indexes and the projection index on the high
cardinality data set. The three bitmap indexes are the same
as in Figure 7. The query processing time is measured from
the client side, and therefore includes network communication
time as well as the time to actually answer the query. The par-
tial range queries are generated by randomly selecting some at-
tributes and constructing a query with the specified query box
size. The query box is defined to be the ratio of the volume of
the hypercube formed by the ranges to the total volume of the
attributes [18]. For example, let the values of Energy be in
the range of 0 to 30 GeV and NumParticles in the range of
1 to 15, the query box size of “Energy > 15 GeV and 7
<= NumParticles < 13” is ���������� � ����. Given
a query box size, the shape of the query box is allowed to
vary. For simplicity, we only use conjunctive queries; that is
the conditions on each attribute are joined together using the
AND operator. Typically, as the query box size increases and

c WAH BBC ORACLE
4 10,196 8,733 335,037
4 305,296 164,665 421,074

18 1,510,740 924,035 1,077,269
19 1,437,892 842,359 1,001,476
24 1,703,456 975,465 1,127,116
25 1,729,380 988,060 1,140,852
33 33,568 9,516 334,420
35 151,808 39,254 349,970
35 151,708 39,222 349,771
35 151,808 39,257 349,797
40 1,964 1,534 330,128
40 1,972 1,599 329,785

total (ORACLE B-Tree indexes: 370,631,794 bytes)
312 7,189,788 4,033,699 7,146,695

c WAH BBC ORACLE
40 1,964 1,534 340,946
40 1,972 1,599 340,573

116 10,339,232 3,393,224 3,473,910
367 10,585,524 3,164,756 3,572,127
371 23,436 16,622 350,916

1,688 11,855,904 3,858,185 4,271,522
1,807 16,182,848 4,922,029 5,414,222
3,786 10,973,128 3,827,861 4,122,542

76,920 19,849,220 8,874,753 8,642,620
514,516 20,807,036 18,059,791 15,606,417
818,300 33,036,432 28,014,187 25,763,032

1,255,695 52,427,916 43,689,012 39,122,608
total (ORACLE B-Tree indexes: 408,149,316 bytes)
2,673,646 186,084,612 117,823,553 111,021,435

(1) 12 low cardinality attributes (2) 12 most commonly queried attributes

Fig. 7. Sizes (Bytes) of the bitmap indexes stored in various schemes.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

query box size

q
u

er
y

p
ro

ce
ss

in
g

 t
im

e
(s

ec
)

WAH
BBC
ORACLE
p scan

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−2

10
−1

10
0

10
1

query box size

q
u

er
y

p
ro

ce
ss

in
g

 t
im

e
(s

ec
)

WAH
BBC
ORACLE
p scan

(a) 2 attributes per query (b) 5 attributes per query

Fig. 8. The average query processing time of random range queries on the 12 most queried attributes of the STAR data.

the number of attributes increases, it takes more time to process
the query.

We also show the time used by the projection index, marked
as ‘p scan’, in Figure 8. The projection index only access the at-
tributes involved in a query and is much faster than most index-
ing strategies [22]. For example, on our test machine, ORACLE
takes about 6.5 seconds to scan a table with 12 attributes while
the projection scan only need 0.56 (� �����) seconds. Had we
actually stored all 500 attributes in the table, ORACLE would
take nearly 5 minutes to perform its scan operation. Clearly, the
projection scan is fast. We also take full advantage of the fast
bitmap data structure to store the intermediate results. When
evaluating conjunctive queries, the result of the left side can be
used as the mask to limit the amount work needed to evaluate
the right side. A sophisticated execution planner could easily
determine an evaluation order that minimizes the total amount
of work. However, our stand-alone indexing software does not
have such a planner. Nevertheless, simply using a mask has re-
duced the amount of work tremendously. This is reflected in

the case where the projection scan time is always quite close to
0.56 seconds.

We see that WAH compressed bitmap indexes are signifi-
cantly more efficient than the BBC compressed indexes. When
there are two attributes per query, WAH compressed indexes are
about four times faster than the stand-alone BBC compressed
indexes and 10 times faster than ORACLE. When there are five
attributes per query, WAH compressed indexes are nearly five
times faster than the stand-alone BBC compressed indexes and
14 times faster than ORACLE. In all cases, our WAH com-
pressed bitmap indexes are at least twice as fast as the projec-
tion index. When the query box sizes are small, it can be orders
of magnitudes faster than the projection scan.

We saw in the previous section that on the average, WAH can
perform logical operations 12 times faster than BBC, but in this
section we observe that the query processing speed only differs
by a factor of four to five. This is in part because much of the
time is spent on performing logical operations on very sparse
bitmaps where WAH was measured to be about four to five

times faster than BBC. In addition, we have only improved the
speed of logical operations which is only one part of the time
spent in query processing. Other operations, such as network
communication, query parsing, and locking overhead, used to
be insignificant part of the total execution time now become
more important after we have dramatically reduced the logical
operation time.

Comparing ORACLE’s implementation of BBC with our
own, we found that ORACLE’s implementation performs
slower than ours. This is clearly evident when a large number
of logical operations are needed, as in the cases of processing
queries on high cardinality attributes, see Figure 8. Next, we
examine whether the same behavior persists on low cardinality
attributes.

Figure 9 shows the average query processing time on the 12
low cardinality attributes. From Figure 9 we see that it al-
ways takes less time to use the WAH compressed bitmap in-
dexes. The two versions of BBC compressed bitmap indexes
(the stand-alone version and the ORACLE version) take about
the same amount of time when there are two attributes in a
query. However, ORACLE takes less time than the stand-alone
version when there are five attributes in a query. This is because
ORACLE uses a better execution plan than the stand-alone ver-
sion. For example, if NumParticles actually have only three
values, 1, 3, and 15, even tough our sample query “Energy >
15 GeV and 7 <= NumParticles < 13” has a query
box size of 0.19, it generates no hits. If the condition on
NumParticles is evaluated first, there is no need to evalu-
ation the condition on Energy. Since the stand-alone version
has not implemented any query planning functionality, it eval-
uates the condition on Energy first and wastes time. The cost
saving due to this query planning functionality is more signifi-
cant when more attributes are involved.

Figure 9 also contains the timing information of the un-
compressed bitmap indexes, marked as “LIT.” The BBC com-
pressed indexes often takes more time than the uncompressed
indexes, but the WAH compressed indexes are always faster. In
many cases, the WAH compressed indexes only needs about a
third of the time used by the uncompressed indexes to process
the same queries.

VI. SUMMARY

This research was motivated by the need to improve the query
response time of a scientific data management project. Based
on the characteristics of the dataset and queries, the bitmap in-
dexing strategy is a good choice. However because most of the
commonly queried attributes have a large number of distinct
values, the basic bitmap index takes too much space and query
response time is too long. This paper describes a compression
scheme for addressing these performance issues. It is well ac-
cepted that I/O dominates the operational efficiency of out-of-
core indexing methods. Thus, most compression schemes de-
signed for bitmap indexes only attempt to minimize I/O, i.e.,
reduce the size of the bitmaps. Compressing bitmap indexes us-
ing these schemes doesn’t lead to optimal query response time.
Our tests show that the computation time dominates the total
time. In addition, as main memories become cheaper, we ex-
pect that “popular” bitmaps will remain in memory once they

are used. For these reasons, we pursued the course of improving
the computational efficiency of operations over bitmaps. The
best existing bitmap compression schemes are byte-aligned. In
this paper, we presented a word-aligned scheme WAH, that is
not only much simpler but is also very CPU-friendly. This en-
sures that the logical operations are performed efficiently. Tests
on a set of real application data show that it is 12 times as fast
as BBC while using only 60% more space.

We also demonstrated from tests that improving the compres-
sion scheme actually improves the query answering speed, not
only logical operations. Tests show that WAH compressed in-
dexes are not only smaller than the uncompressed indexes, they
also take less time to answer queries. Compared to the indexes
compressed with BBC, the WAH compressed indexes are faster
by a factor of four or five. We did not see a factor of 12 improve-
ment because the time spent in query processing are dominated
by logical operations on very sparse bitmaps. On very sparse
bitmaps, WAH scheme is faster than BBC usually by a factor of
about four or five. During query processing there is also some
amount of time spent in parsing the query, obtaining the locks
and so on. The time for these operations have not been reduced
by using a different compression scheme. In spite of all these,
we believe it is worthwhile to use WAH instead of BBC to com-
press bitmap indexes.

The bitmap index is often thought to be effective only on low
cardinality attributes. By using WAH, we demonstrated that it
is effective even for attributes with thousands of distinct values.

VII. ACKNOWLEDGMENTS

This work was supported by the Director, Office of Science,
Office of Laboratory Policy and Infrastructure Management, of
the U.S. Department of Energy under Contract No. DE-AC03-
76SF00098. This research used resources of the National En-
ergy Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy.

REFERENCES

[1] Sihem Amer-Yahia and Theodore Johnson. Optimizing queries on
compressed bitmaps. In Amr El Abbadi, Michael L. Brodie, Sharma
Chakravarthy, Umeshwar Dayal, Nabil Kamel, Gunter Schlageter, and
Kyu-Young Whang, editors, VLDB 2000, Proceedings of 26th Interna-
tional Conference on Very Large Data Bases, September 10-14, 2000,
Cairo, Egypt, pages 329–338. Morgan Kaufmann, 2000.

[2] G. Antoshenkov. Byte-aligned bitmap compression. Technical report,
Oracle Corp., 1994. U.S. Patent number 5,363,098.

[3] G. Antoshenkov and M. Ziauddin. Query processing and optimization in
ORACLE RDB. The VLDB Journal, 5:229–237, 1996.

[4] Rudolf Bayer. UB-trees and UB-cache – A new processing paradigm for
database systems. Technical Report TUM-I9722, TU Mnchen, 1997.

[5] Luis M. Bernardo, Arie Shoshani, Alex Sim, and Henrik Nordberg. Ac-
cess coordination of tertiary storage for high energy physics applications.
In IEEE Symposium on Mass Storage Systems, pages 105–118, 2000.

[6] C.-Y. Chan and Y. E. Ioannidis. Bitmap index design and evaluation.
In Proceedings of the 1998 ACM SIGMOD: International Conference on
Management of Data. ACM press, 1998.

[7] C. Y. Chan and Y. E. Ioannidis. An efficient bitmap encoding scheme
for selection queries. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh,
editors, SIGMOD 1999, Proceedings ACM SIGMOD International Con-
ference on Management of Data, June 1-3, 1999, Philadelphia, Pennsyl-
vania, USA. ACM Press, 1999.

[8] S. Chaudhuri and U. Dayal. An overview of data wharehousing and
OLAP technology. ACM SIGMOD Record, 26(1):65–74, March 1997.

[9] Douglas Comer. The ubiquitous B-tree. Computing Surveys, 11(2):121–
137, 1979.

10
−4

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

query box size

q
u

er
y

p
ro

ce
ss

in
g

 t
im

e
(s

ec
)

WAH
BBC
ORACLE
LIT

10
−4

10
−3

10
−2

10
−1

10
−2

10
−1

10
0

query box size

q
u

er
y

p
ro

ce
ss

in
g

 t
im

e
(s

ec
)

WAH
BBC
ORACLE
LIT

(a) 2 attributes per query (b) 5 attributes per query

Fig. 9. The average query processing time of random range queries on the 12 low cardinality attributes of the STAR data.

[10] K. Furuse, K. Asada, and A. Iizawa. Implementation and performance
evaluation of compressed bit-sliced signature files. In Subhash Bhalla, ed-
itor, Information Systems and Data Management, 6th International Con-
ference, CISMOD’95, Bombay, India, November 15-17, 1995, Proceed-
ings, volume 1006 of Lecture Notes in Computer Science, pages 164–177.
Springer, 1995.

[11] V. Gaede and O. Günther. Multidimension access methods. ACM Com-
puting Surveys, 30(2):170–231, 1998.

[12] Y. Ishikawa, H. Kitagawa, and N. Ohbo. Evalution of signature files as set
access facilities in OODBs. In P. Buneman and S. Jajodia, editors, Pro-
ceedings ACM SIGMOD International Conference on Managerment of
Data, May 26-28, 1993, Washington, D.C., pages 247–256. ACM Press,
1993.

[13] T. Johnson. Performance measurements of compressed bitmap indices.
In M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L.
Brodie, editors, VLDB’99, Proceedings of 25th International Conference
on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland,
UK, pages 278–289.Morgan Kaufmann, 1999. A longer version appeared
as AT&T report number AMERICA112.

[14] M. Jürgens and H.-J. Lenz. Tree based indexes vs. bitmap indexes - a per-
formance study. In S. Gatziu, M. A. Jeusfeld, M. Staudt, and Y. Vassiliou,
editors, Proceedings of the Intl. Workshop on Design and Management of
Data Warehouses, DMDW’99, Heidelberg, Germany, June 14-15, 1999,
1999.

[15] Nick Koudas. Space efficient bitmap indexing. In Proceedingsof the ninth
international conference on Information knowledge management CIKM
2000 November 6 - 11, 2000, McLean, VA USA, pages 194–201. ACM,
2000.

[16] D. L. Lee, Y. M. Kim, and G. Patel. Efficient signature file methods for
text retrieval. IEEE Transactions on Knowledge and Data Engineering,
7(3), 1995.

[17] Jean loup Gailly and Mark Adler. zlib 1.1.3 manual, July 1998. Source
code available at http://www.info-zip.org/pub/infozip-
/zlib.

[18] V. Markl and R. Bayer. Processing relational OLAP queries with UB-
trees and multidimensional hierarchical clustering. In M. A. Jeusfeld,
H. Shu, M. Staudt, and G. Vossen, editors, Proceedings of the Second
Intl. Workshop on Design and Management of Data Warehouses, DMDW
2000, Stockholm, Sweden, June 5-6, 2000, 2000.

[19] Volker Markl. MISTRAL: processing relational queries using a multidi-
mensional access technique. PhD thesis, Institut für Informatik der Tech-
nischen Universität München, 1999.

[20] A. Moffat and J. Zobel. Parameterised compression for sparse bitmaps. In
N. Belkin, P. Ingwersen, and A. M. Pejtersen, editors, Proc. ACM-SIGIR
International Conference on Research and Development in Information
Retrieval, Copenhagen, June 1992, pages 274–285. ACM Press, 1992.

[21] P. O’Neil. Model 204 architecture and performance. In 2nd International
Workshop in High Performance Transaction Systems, Asilomar, CA, vol-
ume 359 of Springer-Verlag Lecture Notes in Computer Science, pages
40–59, September 1987.

[22] P. O’Neil and D. Quass. Improved query performance with variant in-

dices. In Joan Peckham, editor, ProceedingsACM SIGMOD International
Conference on Managermentof Data, May 13-15, 1997, Tucson, Arizona,
USA, pages 38–49. ACM Press, 1997.

[23] P. E. O’Neil and G. Graefe. Multi-table joins through bitmapped join
indices. SIGMOD Record, 24(3):8–11, 1995.

[24] D. A. Patterson, J. L. Hennessy, and D. Goldberg. Computer Architecture
: A Quantitative Approach. Morgan Kaufmann, 2nd edition, 1996.

[25] A. Shoshani, L. M. Bernardo, H. Nordberg, D. Rotem, and A. Sim. Mul-
tidimensional indexing and query coordination for tertiary storage man-
agement. In 11th International Conference on Scientific and Statistical
Database Management, Proceedings, Cleveland, Ohio, USA, 28-30 July,
1999, pages 214–225. IEEE Computer Society, 1999.

[26] K. Stockinger, D. Duellmann, W. Hoschek, and E. Schikuta. Improving
the performance of high-energy physics analysis through bitmap indices.
In 11th International Conference on Database and Expert Systems Appli-
cations DEXA 2000, London, Greenwich, UK, September 2000.

[27] H. K. T. Wong, H.-F. Liu, F. Olken, D. Rotem, and L. Wong. Bit trans-
posed files. In Proceedings of VLDB 85, Stockholm, pages 448–457,
1985.

[28] K.-L. Wu and P. Yu. Range-based bitmap indexing for high cardinality
attributes with skew. Technical Report RC 20449, IBM Watson Research
Division, Yorktown Heights, New York, May 1996.

[29] Kesheng Wu, Ekow J. Otoo, Arie Shoshani, and Henrik Nordberg. Notes
on design and implementation of compressed bit vectors. Technical Re-
port LBNL/PUB-3161, Lawrence Berkeley National Laboratory, Berke-
ley, CA, 2001.

[30] M.-C. Wu and A. P. Buchmann. Encoded bitmap indexing for data ware-
houses. In Fourteenth International Conference on Data Engineering,
February 23-27, 1998, Orlando, Florida, USA, pages 220–230. IEEE
Computer Society, 1998.

